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MPI RMA Concepts
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Single-Sided Model
• Remote memory can be read or written directly using 

library calls

• Remote process does not actively participate

- No matching receive (or send) needs to be performed

- Synchronisation is now a major issue
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Motivation

• Why extend the basic message-passing model?

• Hardware

- Many supercomputer netorks support Remote Memory Access 

(RMA) in hardware

- This is the fundamental model for SMP systems

- Many users started to use RMA calls for efficiency

• Lead to the development of non-portable parallel applications

• Software

- Many algorithms naturally single-sided

• e.g., sparse matrix-vector

- Matching send/receive pairs requires extra programming

- Even worse if communication structure changes

• e.g., adaptive decomposition
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Why RMA
• One-sided communication functions are an interface to 

MPI RMA

- I think “one sided” is a confusing term because, as we will see, 

whilst the communication calls themselves are one sided often the 

synchronisation is issued on both sides

• Is a natural fit for some codes

• Can provide a performance/scalability increase for your 

codes

- Programmability reasons

- Hardware (interconnect) reasons

- But is not a silver bullet!
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Terminology

• Origin is the process initiating the request (performs the 

call)

- Irrespective of whether data is being retrieved or written

• Target is the process whose memory is accessed

- By the origin, either remotely reading or writing to this

• All remote access performed on windows of memory

• All access calls are non-blocking and issued inside an 

epoch

- The epoch is what forces synchronisation of these calls
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RMA program flow

• Collectively initialise a window

a) Start an RMA epoch (synchronisation)

b) Issue communication calls

c) Stop an RMA epoch (synchronisation)

• Collectively free the window

Repeat as many 

times as you want
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Getting started with RMA

Window management, fences and data movement
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Window creation

• A collective call, issued by all processes in the 

communicator

int MPI_Win_create(void *base, MPI_Aint size, int disp_unit, 

MPI_Info info, MPI_Comm comm, MPI_Win *win)

• Each process may specify completely different locations, sizes, displacement 

units and info arguments.

• You can specify no memory with a zero size and NULL base

• The same region of memory may appear in multiple windows that have been 

defined for a process. But concurrent communications to overlapping 

windows are disallowed.

• Performance may be improved by ensuring that the windows align with 

boundaries such as word or cache-line boundaries.
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Other window management

• Retrieving window attributes
int MPI_Win_get_attr(MPI_Win win, int win_keyval, 

void *attribute_val, int *flag)

- win_keyval is one of MPI_WIN_BASE, MPI_WIN_SIZE, MPI_WIN_DISP_UNIT, 

MPI_WIN_CREATE_FLAVOR, MPI_WIN_MODEL

- Attribute_val if the attribute is available and in this case (flag is true), 

otherwise flag will be false

• Freeing a window
int MPI_Win_free(MPI_Win *win)

- All RMA calls must have been completed (i.e. the epoch stopped)
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Fences

• Synchronisation calls are  required to start and stop an 

epoch

- Fences are the simplest way of doing this where global 

synchronisation phases alternate with global communication

• Most closely follows a barrier synchronisation

- A (collective) fence is called at the start and stop of an epoch
int MPI_Win_fence(int assert, MPI_Win win)

MPI_Win_fence(0, window);

Communication calls go here

MPI_win_fence(0, window);

RMA can not be started until 

this first fence

All issued communication 

calls block here
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Fence attributes
• Attributes allow you to tell the MPI library more information for 

performance (but MPI implementations are allowed to ignore it!)

• MPI_MODE_NOSTORE local window is not updated by local writes of 

any form since last synchronisation. Can be different on processes

• MPI_MODE_NOPUT local window will not be updated by 

put/accumulate RMA operations until AFTER the next synchronisation 

call. Can be different on processes

• MPI_MODE_NOPRECEDE fence does not complete any sequence of 

locally issues RMA calls. Attribute must be given by all processes

• MPI_MODE_NOSUCCEED fence does not start any sequence of locally 

issued RMA calls. Attribute must be given by all processes

- Attributes can be or’d together, i.e. 
• MPI_Win_fence((MPI_MODE_NOPUT | MPI_MODE_NOPRECEDE), 

window) or ior(MPI_MODE_NOPUT, MPI_MODE_NOPRECEDE)

15



RMA Communication calls
• Three general calls, all non-blocking:
- Get data from target’s memory

int MPI_Get(void *origin_addr, int origin_count, 

MPI_Datatype origin_datatype, int target_rank, 

MPI_Aint target_disp, int target_count, 

MPI_Datatype target_datatype, MPI_Win win)

- Put data into target’s memory
int MPI_Put(const void *origin_addr, int origin_count, 

MPI_Datatype origin_datatype, int target_rank,

MPI_Aint target_disp, int target_count, 

MPI_Datatype target_datatype, MPI_Win win)

- Accumulate data in target’s memory with some other data
int MPI_Accumulate(void *origin_addr, int origin_count,

MPI_Datatype origin_datatype, int target_rank, 

MPI_Aint target_disp, int target_count, 

MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)
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RMA communication comments

• Similarly to non-blocking P2P one must wait for synchronisation (i.e. end 
of the epoch) until accessing retrieved data (get) or overwriting written 
data (put/accumulate)

• target_disp is multiplied by window displacement unit, 
origin_count and target_count are in units of data type

• Undefined operations:
- Local stores/reads with a remote PUT in an epoch

- Several origin processes performing concurrent PUT to the same target location

- Single origin process performing multiple PUTs to the same target location in a single 
epoch

• Accumulate supports the MPI_Reduce operations, but NOT user defined 
operations. Also supports MPI_REPLACE which is effectively the same as 
a put.
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Generic Simple Approach

• Declare local storage on each rank

• Create a window including all storage: MPI_Win_create()

- replaces the communicator in subsequent RMA calls

• Write data to local storage using normal array operations

• Synchronise so everyone is ready: MPI_Win_fence()

- Issue remote reads / writes to from  /to data on other processes

• MPI_Get() and MPI_Put()

• Synchronise so everyone is finished: MPI_Win_fence()

• Can now read from local storage as normal
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Example

MPI_Win win;

int masterbuf[20], mybuf[20];

if (rank == 0) {

MPI_Win_create(masterbuf, sizeof(int)*20, sizeof(int),

MPI_INFO_NULL, comm, &win); 

} else {

MPI_Win_create(NULL, 0, 1, MPI_INFO_NULL, comm, &win); 

}

if (rank == 0) initialise(masterbuf);

MPI_Win_fence(MPI_MODE_NOPRECEDE,win);

if (rank != 0) {

MPI_Get(mybuf, 20 , MPI_INT, 0, 0, 20, MPI_INT, win);

}

MPI_Win_fence(MPI_MODE_NOSUCCEED, win);

if (rank != 0) process(mybuf);

MPI_Win_free(&win)

Based on an example at 

cvw.cac.cornell.edu/MPIoneSided/fence

Rank 0 creates a window of 20 

integers, displacement unit = 4 

bytes (= 1 integer)

Other ranks create a window but 

attach no local memory

Fence, no preceding RMA calls 

Non-zero ranks get the 20 integers 

from rank 0

Fence, complete all communications 

and no RMA calls in next epoch
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Summary

• Model is quite simple

- although syntax can be quite challenging

• Performance may not be very good

- portability and flexibility requirements of MPI mean that latency may 

not be as small as you hoped

• However

- windows are a key component of MPI shared-memory approach

- see later ...
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